翻訳と辞書
Words near each other
・ Kolombangara monarch
・ Kolombangara white-eye
・ Kolombari
・ Kolombatovic's goby
・ Kolombatovic's long-eared bat
・ Kolomenskaya (Moscow Metro)
・ Kolomenskoye
・ Kolomensky
・ Kolomensky (inhabited locality)
・ Kolomensky District
・ Kolmogorov backward equations (diffusion)
・ Kolmogorov complexity
・ Kolmogorov continuity theorem
・ Kolmogorov equations
・ Kolmogorov equations (Markov jump process)
Kolmogorov extension theorem
・ Kolmogorov integral
・ Kolmogorov microscales
・ Kolmogorov space
・ Kolmogorov structure function
・ Kolmogorov's criterion
・ Kolmogorov's inequality
・ Kolmogorov's theorem
・ Kolmogorov's three-series theorem
・ Kolmogorov's two-series theorem
・ Kolmogorov's zero–one law
・ Kolmogorov–Arnold representation theorem
・ Kolmogorov–Arnold–Moser theorem
・ Kolmogorov–Smirnov test
・ Kolmogorov–Zurbenko filter


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kolmogorov extension theorem : ウィキペディア英語版
Kolmogorov extension theorem
In mathematics, the Kolmogorov extension theorem (also known as Kolmogorov existence theorem or Kolmogorov consistency theorem) is a theorem that guarantees that a suitably "consistent" collection of finite-dimensional distributions will define a stochastic process. It is credited to the Soviet mathematician Andrey Nikolaevich Kolmogorov.
==Statement of the theorem==

Let T denote some interval (thought of as "time"), and let n \in \mathbb. For each k \in \mathbb and finite sequence of times t_, \dots, t_ \in T, let \nu_} be a probability measure on (\mathbb^)^. Suppose that these measures satisfy two consistency conditions:
1. for all permutations \pi of \ and measurable sets F_ \subseteq \mathbb^,
:\nu_} \left( F_ \times \dots \times F_ \right) = \nu_} \left( F_ \times \dots \times F_ \right);
2. for all measurable sets F_ \subseteq \mathbb^,m \in \mathbb
:\nu_} \left( F_ \times \dots \times F_ \right) = \nu_ t_, \dots , t_} \left( F_ \times \dots \times F_ \times \mathbb^ \times \dots \times \mathbb^ \right).
Then there exists a probability space (\Omega, \mathcal, \mathbb) and a stochastic process X : T \times \Omega \to \mathbb^ such that
:\nu_} \left( F_ \times \dots \times F_ \right) = \mathbb \left( X_, \dots, X_ \right)
for all t_ \in T, k \in \mathbb and measurable sets F_ \subseteq \mathbb^, i.e. X has \nu_} as its finite-dimensional distributions relative to times t_ \dots t_.
In fact, it is always possible to take as the underlying probability space \Omega = (\mathbb^n)^T and to take for X the canonical process X\colon (t,Y) \mapsto Y_t. Therefore, an alternative way of stating Kolomogorov's extension theorem is that, provided that the above consistency conditions hold, there exists a (unique) measure \nu on (\mathbb^n)^T with marginals \nu_} for any finite collection of times t_ \dots t_. Kolmogorov's extension theorem applies when T is uncountable, but the price to pay
for this level of generality is that the measure \nu is only defined on the product σ-algebra of (\mathbb^n)^T, which is not very rich.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kolmogorov extension theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.